Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 33(7): 1493-1504.e5, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33989520

RESUMO

The cell-intrinsic nature of tumor metabolism has become increasingly well characterized. The impact that tumors have on systemic metabolism, however, has received less attention. Here, we used adult zebrafish harboring BRAFV600E-driven melanoma to study the effect of cancer on distant tissues. By applying metabolomics and isotope tracing, we found that melanoma consume ~15 times more glucose than other tissues measured. Despite this burden, circulating glucose levels were maintained in disease animals by a tumor-liver alanine cycle. Excretion of glucose-derived alanine from tumors provided a source of carbon for hepatic gluconeogenesis and allowed tumors to remove excess nitrogen from branched-chain amino acid catabolism, which we found to be activated in zebrafish and human melanoma. Pharmacological inhibition of the tumor-liver alanine cycle in zebrafish reduced tumor burden. Our findings underscore the significance of metabolic crosstalk between tumors and distant tissues and establish the adult zebrafish as an attractive model to study such processes.


Assuntos
Alanina/metabolismo , Fígado/metabolismo , Melanoma/metabolismo , Envelhecimento/patologia , Animais , Animais Geneticamente Modificados , Rastreamento de Células/métodos , Modelos Animais de Doenças , Gluconeogênese/genética , Humanos , Marcação por Isótopo/métodos , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Melanoma/genética , Melanoma/patologia , Metabolômica , Peixe-Zebra
2.
Methods Mol Biol ; 1862: 1-15, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30315456

RESUMO

There are thousands of published methods for profiling metabolites with liquid chromatography/mass spectrometry (LC/MS). While many have been evaluated and optimized for a small number of select metabolites, very few have been assessed on the basis of global metabolite coverage. Thus, when performing untargeted metabolomics, researchers often question which combination of extraction techniques, chromatographic separations, and mass spectrometers is best for global profiling. Method comparisons are complicated because thousands of LC/MS signals (so-called features) in a typical untargeted metabolomic experiment cannot be readily identified with current resources. It is therefore challenging to distinguish methods that increase signal number due to improved metabolite coverage from methods that increase signal number due to contamination and artifacts. Here, we present the credentialing protocol to remove the latter from untargeted metabolomic datasets without having to identify metabolite structures. This protocol can be used to compare or optimize methods pertaining to any step of the untargeted metabolomic workflow (e.g., extraction, chromatography, mass spectrometer, informatic software, etc.).


Assuntos
Análise de Dados , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Conjuntos de Dados como Assunto , Metabolômica/instrumentação , Software , Espectrometria de Massas em Tandem/instrumentação
3.
J Proteome Res ; 17(10): 3537-3546, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30160483

RESUMO

Existing hydrophilic interaction liquid chromatography (HILIC) methods, considered individually, each exhibit poor chromatographic performance for a substantial fraction of polar metabolites. In addition to limiting metabolome coverage, such deficiencies also complicate automated data processing. Here we show that some of these analytical challenges can be addressed for the ZIC-pHILIC, a zwitterionic stationary phase commonly used in metabolomics, with the addition of trace levels of phosphate. Specifically, micromolar phosphate extended metabolome coverage by hundreds of credentialed features, improved peak shapes, and reduced peak-detection errors during informatic processing. Although the addition of high levels of phosphate (millimolar) as a HILIC mobile phase buffer has been explored previously, such concentrations interfere with mass spectrometric (MS) detection. We show that using phosphate as a trace additive at micromolar concentrations improves analysis by electrospray MS, increasing signal for a diverse set of polar standards. Given the small amount of phosphate needed, comparable chromatographic improvements were also achieved by direct addition of phosphate to the sample during reconstitution. Our results suggest that defects in ZIC-pHILIC performance are predominantly driven by electrostatic interactions, which can be modulated by phosphate. These findings constitute both a methodological improvement for untargeted metabolomics and an advance in our understanding of the mechanisms limiting HILIC coverage.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Metaboloma , Metabolômica/métodos , Fosfatos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Reprodutibilidade dos Testes , Eletricidade Estática
4.
Anal Bioanal Chem ; 410(4): 1287-1297, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29256075

RESUMO

Although it is common in untargeted metabolomics to apply reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) methods that have been systematically optimized for lipids and central carbon metabolites, here we show that these established protocols provide poor coverage of semipolar metabolites because of inadequate retention. Our objective was to develop an RPLC approach that improved detection of these metabolites without sacrificing lipid coverage. We initially evaluated columns recently released by Waters under the CORTECS line by analyzing 47 small-molecule standards that evenly span the nonpolar and semipolar ranges. An RPLC method commonly used in untargeted metabolomics was considered a benchmarking reference. We found that highly nonpolar and semipolar metabolites cannot be reliably profiled with any single method because of retention and solubility limitations of the injection solvent. Instead, we optimized a multiplexed approach using the CORTECS T3 column to analyze semipolar compounds and the CORTECS C8 column to analyze lipids. Strikingly, we determined that combining these methods allowed detection of 41 of the total 47 standards, whereas our reference RPLC method detected only 10 of the 47 standards. We then applied credentialing to compare method performance at the comprehensive scale. The tandem method showed more than a fivefold increase in credentialing coverage relative to our RPLC benchmark. Our results demonstrate that comprehensive coverage of metabolites amenable to reversed-phase separation necessitates two reconstitution solvents and chromatographic methods. Thus, we suggest complementing HILIC methods with a dual T3 and C8 RPLC approach to increase coverage of semipolar metabolites and lipids for untargeted metabolomics. Graphical abstract Analysis of semipolar and nonpolar metabolites necessitates two reversed-phase chromatography (RPLC) methods, which extend metabolome coverage more than fivefold for untargeted profiling. HILIC hydrophilic interaction liquid chromatography.


Assuntos
Cromatografia de Fase Reversa/métodos , Metaboloma , Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas , Padrões de Referência , Solubilidade
5.
Anal Chem ; 88(18): 9037-46, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27513885

RESUMO

Analysis of a single analyte by mass spectrometry can result in the detection of more than 100 degenerate peaks. These degenerate peaks complicate spectral interpretation and are challenging to annotate. In mass spectrometry-based metabolomics, this degeneracy leads to inflated false discovery rates, data sets containing an order of magnitude more features than analytes, and an inefficient use of resources during data analysis. Although software has been introduced to annotate spectral degeneracy, current approaches are unable to represent several important classes of peak relationships. These include heterodimers and higher complex adducts, distal fragments, relationships between peaks in different polarities, and complex adducts between features and background peaks. Here we outline sources of peak degeneracy in mass spectra that are not annotated by current approaches and introduce a software package called mz.unity to detect these relationships in accurate mass data. Using mz.unity, we find that data sets contain many more complex relationships than we anticipated. Examples include the adduct of glutamate and nicotinamide adenine dinucleotide (NAD), fragments of NAD detected in the same or opposite polarities, and the adduct of glutamate and a background peak. Further, the complex relationships we identify show that several assumptions commonly made when interpreting mass spectral degeneracy do not hold in general. These contributions provide new tools and insight to aid in the annotation of complex spectral relationships and provide a foundation for improved data set identification. Mz.unity is an R package and is freely available at https://github.com/nathaniel-mahieu/mz.unity as well as our laboratory Web site http://pattilab.wustl.edu/software/ .


Assuntos
Espectrometria de Massas/métodos , Metabolômica/métodos , Software , Algoritmos , Ácido Glutâmico/química , NAD/química
6.
Anal Chem ; 88(5): 2538-42, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26837423

RESUMO

Metabolite identifications are most frequently achieved in untargeted metabolomics by matching precursor mass and full, high-resolution MS(2) spectra to metabolite databases and standards. Here we considered an alternative approach for establishing metabolite identifications that does not rely on full, high-resolution MS(2) spectra. First, we select mass-to-charge regions containing the most informative metabolite fragments and designate them as bins. We then translate each metabolite fragmentation pattern into a binary code by assigning 1's to bins containing fragments and 0's to bins without fragments. With 20 bins, this binary-code system is capable of distinguishing 96% of the compounds in the METLIN MS(2) library. A major advantage of the approach is that it extends untargeted metabolomics to low-resolution triple quadrupole (QqQ) instruments, which are typically less expensive and more robust than other types of mass spectrometers. We demonstrate a method of acquiring MS(2) data in which the third quadrupole of a QqQ instrument cycles over 20 wide isolation windows (coinciding with the location and width of our bins) for each precursor mass selected by the first quadrupole. Operating the QqQ instrument in this mode yields diagnostic bar codes for each precursor mass that can be matched to the bar codes of metabolite standards. Furthermore, our data suggest that using low-resolution bar codes enables QqQ instruments to make MS(2)-based identifications in untargeted metabolomics with a specificity and sensitivity that is competitive to high-resolution time-of-flight technologies.


Assuntos
Processamento Eletrônico de Dados/métodos , Metaboloma , Metabolômica/métodos , Limite de Detecção , Espectrometria de Massas
7.
Bioinformatics ; 32(2): 268-75, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26424859

RESUMO

MOTIVATION: Current informatic techniques for processing raw chromatography/mass spectrometry data break down under several common, non-ideal conditions. Importantly, hydrophilic liquid interaction chromatography (a key separation technology for metabolomics) produces data which are especially challenging to process. We identify three critical points of failure in current informatic workflows: compound specific drift, integration region variance, and naive missing value imputation. We implement the Warpgroup algorithm to address these challenges. RESULTS: Warpgroup adds peak subregion detection, consensus integration bound detection, and intelligent missing value imputation steps to the conventional informatic workflow. When compared with the conventional workflow, Warpgroup made major improvements to the processed data. The coefficient of variation for peaks detected in replicate injections of a complex Escherichia Coli extract were halved (a reduction of 19%). Integration regions across samples were much more robust. Additionally, many signals lost by the conventional workflow were 'rescued' by the Warpgroup refinement, thereby resulting in greater analyte coverage in the processed data. AVAILABILITY AND: I: MPLEMENTATION: Warpgroup is an open source R package available on GitHub at github.com/nathaniel-mahieu/warpgroup. The package includes example data and XCMS compatibility wrappers for ease of use. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. CONTACT: nathaniel.mahieu@wustl.edu or gjpattij@wustl.edu.


Assuntos
Algoritmos , Interpretação Estatística de Dados , Processamento Eletrônico de Dados , Metabolômica/métodos , Cromatografia Líquida/métodos , Consenso , Bases de Dados de Compostos Químicos , Humanos , Espectrometria de Massas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...